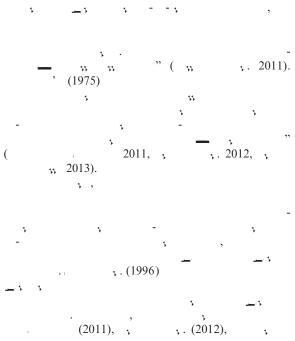
The checkered history of checkerboard distributions

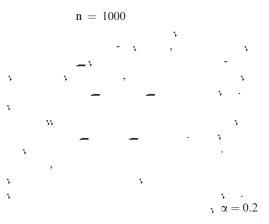
A . ,^{1,4} A . ,² A A B ³

¹Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132 USA ²Department of Biology, Rhodes College, Memphis, Tennessee 38112 USA ³Department of Ecology and Evolutionary Biology,2f Ecnnessee98.0314Tmxvi32**5**ap:n833.e37996and

5.


55

\$


\$

55

Analytical procedures

 $\alpha, \ldots, \alpha = 0.2$

 $\alpha_{3}, \beta_{2}, \dots, \beta_{n-1}, \beta_$

A B. (1979)

 3
 3
 3

 0, 1, 2, 3, ... ;

(), s, ² . S

(. 1). ; _____, ____, " () ;, ... Comparing congeneric and within-guild pairs to pairs of unrelated species. ,

 $\alpha = 0.2; \quad B \qquad A \qquad ; \qquad .$

α, 0.2 , """S, "

s s δ, S s N

2013

, , , , , ,	12 1 528 1 540 7	0 61 61 0	w 0 55 55 0	\$ 0 0 0 0
5	1 528 1 540	61 61	55 55	0 0
5	1 528 1 540	61 61	55 55	0 0
5	1 540	61	55	0
5				
	102	27	17	11
	11073	1484	984	553
\$	11175	1511	1001	564
2	110	25	12	1
5 5				
	97	23	19	19
	9773	1939	1678	1476
3	9870	1962	1697	1495
5	53	9	2	1
Notes: ,	- 3			- ,
<i>m</i> .	» » (1976)	3	· . (2009)	56 - 5

\$

\$

, BA, , AB 1. B 3

1.5 3 1

α, 0.2

. A S $\alpha = 0.257.$ 55

5 5 , ,δ

А

11 55 , 1. A 55 5 ; 1% \$ ٩,

۰; 55 55 55 \$ (A).

\$ \$ \$ \$ \$ \$ ----> ٩, (\$) ٩, \$ \$

\$ \$ 55 1 \$ 55 1 \$

55 \$ \$ 2 4 \$ А А \$ (1) \$ \$ ٩.

 $\delta = 1, 2, 3 \\ 0.2 \qquad B \qquad 0.54 \ 6 \ 0.029 \ ($ α), 0.69 6 0.039, 0.75 6 0.046, ş.,

(. ., 10 \$ 1000) \$ 2010). (, , \$

Vanuatu

А (; 1 1 ٩, 2). (), \$ \$

55 3

\$ 2; A (1). , \$ 55 α, 0.2 (, 2, . 2; A).

11 y y y

). \$ 1 \$ 2; A 0.2 (,α,). \$ \$ (α, \$ 0.2), 3 \$, (А \$ \$ 55). 1 5 \$ \$ 2; A). \$ ж (α, 0.2, 4; A 1 \$). • \$, \$

, 2;

(

\$

 $(P \cdot 0.99; A -).$ Myzomela (P = 0.023; A -). ,

α, 0.2, 55 \$ \$; (P. 0.99; A \$). \$ <u>_</u>__3 \$ \$ 3 \$ \$, (1975:388) \$ 55 \$ \$ 55 5 \$ \$ \$ \$ \$ \$) -_ 1 \$ А \$

\$, \$\$ 55 , \$ \$ <u>_</u> , \$ \$ 55 \$ 7 \$ \$ \$ \$ 5 55 \$ \$ α, 0.2) (\$ (\$ \$)) (\$ \$ \$ $\dot{\alpha} = 0.20,$ \$ \$ \$ \$ 55 \$ ۶ş. • ъ -55 \$ \$ \$ 1 \$ \$

,

55

•

 $\begin{array}{c} \alpha \ , \ 0.2 \\ 1 \ 2 \end{array}$ В 55 \$ \$ \$)-35. " ъ 9 168(, . . <u>--</u>3 В 1.5 \$

4 10 55 55 \$,

5 5 5 5 5, 5 5 , 5 \$ \$ \$ \$ - 5 , 5 5 \$ \$ 3 , А (1984) · **,** (1982) \$ -\$ \$ \$ 5 5